فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    6
  • شماره: 

    3
  • صفحات: 

    408-423
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    82
  • دانلود: 

    0
چکیده: 

Crowdfunding is a new technology-enabled innovative process that is changing the capital market space. Internet-based applications, particularly those related to Web 2. 0, have had a significant impact on sectors of society such as education, business, and medicine. The goal of this research is to fill a gap in the literature on mathematical modelling and prediction of Ensemble Learning in order to evaluate crowdfunding projects. The Mathematical model determines the cost of funding for the entrepreneur and the return investors will receive per period. A correct financial model is essential in order to keep all three stakeholders involved in the long term. The results show the designed model improved performance in predicting the evaluation of success or failure of Crowdfunding projects.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 82

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
عنوان: 
اطلاعات دوره: 
  • سال: 

    0
  • دوره: 

    3
  • شماره: 

    (ویژه نامه 10)
  • صفحات: 

    57-58
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    694
  • دانلود: 

    0
چکیده: 

مقدمه: نظر به اینکه سیستم آموزشی فعلی جهت دانشجویان گروه پزشکی به نحوی است که دانشجویان بیشتر زمان آموزش خود را در چارچوب برنامه های رسمی محدود به شرایط تصنعی و کلاسیک طی می کنند، در نتیجه میزان رضایت از کیفیت آموزش به روش موجود و کاربرد آموخته ها در شرایط واقعی نیاز به بررسی و حتی تغییر در رویکرد حاضر دارد.مرور مطالعات: با مطالعه تاریخچه خدمات و آموزش جامعه نگر و جامعه محور در می یابیم که حدود یک قرن پیش به صورت Service Learning ارایه خدمات و آموزش به فراگیران همزمان در بستر جامعه انجام می پذیرفت. از اوایل 1900 تاکنون، آموزش دهندگان متوجه اهمیت ارتباط خدمات با اهداف آموزش شده اند و درطی قرن از 1960 تا 1970 در نتیجه S.L گذشته این مفهوم در آموزش جایگاه خود را حفظ کرده است. اغلب برنامه های فعالیت دانشجویان در جامعه در راستای اهداف آموزش توسعه یافت. این S.L اساس اعتقاد و مشابه نگرش ساختار گراهاست که معتقدند تولید و ساخت دانش در افراد از دانش و تجربیات پایه و مقدماتی شروع می شود بطرف فرایند یادگیری، تفسیر و بحث پیرامون اطلاعات جدید در زمینه اجتماع و محیط فردی پیش می رود. در حقیقت مفهوم یادگیری دو طرفه اساس و وجه تمایز تجربه ناشی از آموزش به روش دانشجویان به اهداف آموزشی دروس خود با مشارکت در برنامه های ارایه خدمت در شرایط واقعی دست می یابند و جامعه نیز مستقیما از آن بهره مند می شود. در این روش هم فراگیر و هم جامعه بهره مند می شوند. و فراگیران فعالانه به تولید محصول و خدمت مرتبط با اهداف آموزش می پردازند. با توسعه نگرشها، باورها و رفتارها در ارتباط با جامعه، شهروندانی مطلع و نیروی کار تولیدی تربیت می کنند. در این روش اساس کار دریافت باز خورد از جامعه و مدرسان است که به فراگیران فرصت می دهد دانش جدید خود را با دیگران مطرح کند و آموخته های خود را برای دیگران معنی دار کنند.بحث: در آموزش سنتی مردم بر خدماتی که دریافت میکنند، هیچ گونه کنترلی ندارند، فراگیران نیز قدرت مداخله و کاربرد آموخته های خود را ندارند ولی در این آموزش، تمام ابعاد نیازهای مردم دیده می شود و فراگیران با مشارکت مردم روی نیازها کار می کنند، مردم بر ارایه خدمات نظارت دراند. انریش می گوید: یادگیری فراگیران از طریق خواندن کتابهای قطور در اطاقهای در بسته ایجاد نمی شود، بلکه باید درهای پنجره ها را باز کرد و به دنبال تجربه بود. در نهایت به کمک SL فرصتی برای آزمون مسوولیت پذیری، تبدیل شدن به یک شهروند خوب را برای فراگیران در حین دستیابی به اهداف آموزش و ارایه خدمت به مردم ایجاد نماییم.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 694

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    7
تعامل: 
  • بازدید: 

    108
  • دانلود: 

    0
چکیده: 

In recent years, human action recognition in still images has become a challenge in computer vision. Most methods in this field use annotations such as human and object bounding boxes to determine human-object interaction and pose estimation. Preparing these annotations is time-consuming and costly. In this paper, an ensembling-based method is presented to avoid any additional annotations. According to this fact that a network performance on fewer classes of a dataset is often better than its performance on whole classes; the dataset is first divided into four groups. Then these groups are applied to train four lightweight Convolutional Neural Networks (CNNs). Consequently, each of these CNNs will specialize on a specific subset of the dataset. Then, the final convolutional feature maps of these networks are concatenated together. Moreover, a Feature Attention Module (FAM) is trained to identify the most important features among concatenated features for final prediction. The proposed method on the Stanford40 dataset achieves 86. 86% MAP, which indicates this approach can obtain promising performance compared with many existing methods that use annotations.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 108

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

PASRAPOOR M. | BILSTRUP U.

نشریه: 

VIRTUAL

اطلاعات دوره: 
  • سال: 

    621
  • دوره: 

    1
  • شماره: 

    1
  • صفحات: 

    137-141
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    170
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 170

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    9
تعامل: 
  • بازدید: 

    115
  • دانلود: 

    0
چکیده: 

One of the most accessible ways to communicate via text is through a short message service. In recent years, profit-seeking people have taken advantage of the good features of this service to send large numbers of spam messages to random people for malicious purposes. In this respect, detecting spam messages is an important task. The unbalanced proportion of the spam and ham data and the extraction of efficient features from short messages have been the main challenges in the SMS spam detection problem. So far, various methods have been proposed to filter spam messages, whose accuracy still needs to be improved. In this study, we propose an Ensemble Learning method based on random forest and logistic regression algorithms to increase the accuracy of SMS spam detection. The proposed approach has been tested on two real datasets. The experimental evaluation based on accuracy and AUC shows the effectiveness of the proposed Ensemble Learning algorithm.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 115

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    5
تعامل: 
  • بازدید: 

    179
  • دانلود: 

    0
چکیده: 

TODAY, SOCIAL NETWORKS HAVE PROVIDED A SUITABLE PLATFORM FOR SOCIAL RELATIONSHIP. AMONG ONLINE SOCIAL NETWORKS, TWITTER HAS BECOME A POPULAR PLATFORM FOR INFORMATION DIFFUSION AROUND THE WORLD. DUE TO POPULARITY OF TWITTER, IT HAS BEEN TARGETED BY SPAMMERS AND MALICIOUS ACTIVITIES. IN THIS REGARD, SEVERAL STUDIES HAVE BEEN CONDUCTED USING MACHINE Learning TECHNIQUES BY RESEARCHERS TO REACH PROMISING RESULTS. IN RECENT YEARS, Ensemble Learning ALGORITHMS HAVE BEEN PRESENTED AS ONE OF THE MODERN MACHINE Learning TECHNIQUES, DUE TO ITS HIGH ACCURACY, FOR DATA MINING. IN THIS PAPER, WE PROPOSE A DATA MINING FRAMEWORK USING Ensemble Learning FOR SPAM DETECTION IN TWITTER. IN THE PROPOSED METHOD, AFTER DATA COLLECTION, PREPROCESSING, FEATURE EXTRACTION AND FEATURE SELECTION, THE CLASSIFICATION IS CONDUCTED BY Ensemble Learning USING THE DECISION TREE, K-NEAREST NEIGHBOR AND NAï VE BAYES. THE SIMULATION RESULTS ARE COMPARED WITH OTHER CLASSIFICATION ALGORITHMS.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 179

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    21
  • شماره: 

    4
  • صفحات: 

    284-290
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    118
  • دانلود: 

    24
چکیده: 

امروزه شبکه های اجتماعی، نقش مهمی در گسترش اطلاعات در سراسر جهان دارند. توییتر یکی از محبوب ترین شبکه های اجتماعی است که در هر روز 500 میلیون توییت در این شبکه ارسال می شود. محبوبیت این شبکه در میان کاربران منجر شده تا اسپمرها از این شبکه برای انتشار پست های هرزنامه استفاده کنند. در این مقاله برای شناسایی اسپم در سطح توییت از ترکیبی از روش های یادگیری ماشین استفاده شده است. روش پیشنهادی، چارچوبی مبتنی بر استخراج ویژگی است که در دو مرحله انجام می شود. در مرحله اول از Stacked Autoencoder برای استخراج ویژگی ها استفاده شده و در مرحله دوم، ویژگی های مستخرج از آخرین لایه Stacked Autoencoder به عنوان ورودی به لایه softmax داده می شوند تا این لایه پیش بینی را انجام دهد. روش پیشنهادی با برخی روش های مشهور روی پیکره متنی Twitter Spam Detection با معیارهای Accuracy،-Score1F، Precision و Recall مورد مقایسه و ارزیابی قرار گرفته است. نتایج تحقیق نشان می دهند که دقت کشف روش پیشنهادی به 1/78% می رسد. در مجموع، این روش با استفاده از رویکرد اکثریت آرا با انتخاب سخت در یادگیری ترکیبی، توییت های اسپم را با دقت بالاتری نسبت به روش های CNN، LSTM و SCCL تشخیص می دهد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 118

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 24 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Mohammadi Azadeh | Shaverizade Anis

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    12
  • شماره: 

    Special Issue
  • صفحات: 

    29-38
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    31
  • دانلود: 

    0
چکیده: 

Sentiment analysis is a subfield of Natural Language Processing (NLP) which tries to process a text to extract opinions or attitudes towards topics or entities. Recently, the use of deep Learning methods for sentiment analysis has received noticeable attention from researchers. Generally, different deep Learning methods have shown superb performance in sentiment analysis problem. However, deep Learning models are different in nature and have different strengths and limitations. For example, convolutional neural networks are useful for extracting local structures from data, while recurrent models are able to learn order dependence in sequential data. In order to combine the advantages of different deep models, in this paper we have proposed a novel approach for aspect-based sentiment analysis which utilizes deep Ensemble Learning. In the proposed method, we first build four deep Learning models, namely CNN, LSTM, BiLSTM and GRU. Then the outputs of these models are combined using stacking Ensemble approach where we have used logistic regression as meta-learner. The results of applying the proposed method on the real datasets show that our method has increased the accuracy of aspect-based prediction by 5% to 20% compared to the basic deep Learning methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 31

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
عنوان: 
نویسندگان: 

نشریه: 

اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    1
  • شماره: 

    2
  • صفحات: 

    -
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    5
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 5

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    13
  • شماره: 

    1
  • صفحات: 

    1-14
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    155
  • دانلود: 

    39
چکیده: 

پیشینه و اهداف: صنعت بیمة درمانی در پیش بینی هزینه های بیمه افراد که براساس پارامترهای پیچیده ای مانند سن و ویژگی های فیزیکی است، با چالش مهمی مواجه است. شرکت های بیمه برای مدیریت ریسک و جلوگیری از زیان احتمالی، بیمه گذاران را به دو گروه پرخطر و کم خطر دسته بندی می کنند. بااین حال، برآورد دقیق هزینه ها برای هر فرد می تواند کار سختی باشد. برای مقابله با این چالش، ما رویکردی مبتنی بر علم داده و یادگیری ماشین را پیشنهاد می کنیم که از یادگیری جمعی برای پیش بینی افراد پرخطر و کم خطر استفاده می کند.روش شناسی: روش پیشنهادی شامل مراحل مختلفی از جمله پیش پردازش داده ها، مهندسی ویژگی ها و اعتبارسنجی متقابل برای ارزیابی عملکرد مدل است. در مرحلة اول، داده ها را با پاک کردن، مدیریت مقادیر ازدست رفته و رمزگذاری متغیرهای طبقه بندی، پیش پردازش می کنیم. در مرحلة دوم، ما ویژگی های جدیدی را با استفاده از روش های مهندسی ویژگی ها مانند مقیاس بندی، نرمال سازی و کاهش ابعاد تولید می کنیم. این روش ها به استخراج اطلاعات معنادار از داده ها و بهبود عملکرد مدل کمک می کند. در مرحلة بعد، ما از یادگیری جمعی برای ترکیب روش های رگرسیون متعدد، مانند رگرسیون لجستیک، شبکه های عصبی، ماشین های بردار پشتیبانی، جنگل های تصادفی، LightGBM و XGBoost استفاده می کنیم. هدف از ترکیب این روش ها این است که از نقاط قوت آن ها استفاده کنیم و نقاط ضعف آن ها را به حداقل برسانیم تا به دقت پیش بینی بهتری دست یابیم. در نهایت، عملکرد مدل را با استفاده از روش اعتبارسنجی متقاطع k-fold ارزیابی می کنیم. این روش به اعتبارسنجی دقت مدل و جلوگیری از برازش بیش از حد کمک می کند.یافته ها: رویکرد پیشنهادی ما به AUC برابر با 73/0 دست می یابد که اثربخشی آن را در پیش بینی افراد پرخطر و کم خطر نشان می دهد.نتیجه گیری: با استفاده از علم داده و روش های یادگیری ماشین، شرکت های بیمه می توانند دقت برآورد هزینة خود را بهبود بخشند و ریسک را بهتر مدیریت کنند. این رویکرد می تواند به شرکت های بیمه کمک کند تا پوشش بیمه ای و قیمت گذاری دقیق تری را برای افراد ارائه دهند که به رضایت بیشتر مشتریان و کاهش زیان های مالی منجر می شود.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 155

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 39 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button